10C - SURFACE TENSION

Part 1 Analysis – Demonstrating surface tension

Table 1 - Demonstrating surface tension

# of drops	Observations of water			

Part 1 Questions – Demonstrating surface tension

② 1. Why does the penny have to be clean, and free of oils and detergents?

2. What type of intermolecular forces are holding the drop together? How does this force work on the molecular level?

② 3. Provide evidence from this activity that supports the claim that water has a high surface tension.

Part 2 Analysis - Surface tension supports weight

Table 2 - Surface tension supports weight

Item	Small paperclip	Large paperclip	Dime	Staple
Observations				

	Part 2 Questions – Surface tension supports weight					
0	1.	Which objects did you succe molecular level that allows	ssfully float on the surface of the water? What is happening at the these objects to float?			
•	2.	What do you observe about	the surface of the water near the paperclip?			
0	3.		of how various items behaved on the surface of the water, how does the intermolecular forces at the surface of the water?			
0	4.	In terms of density and inte	ermolecular forces, why was it so difficult to get the dime to float?			
		rt 3 Analysis – Surfactants ble 3 – Surfactants				
	Ol	bservations				
	Nı	umber of drops required to see a				

change

Part 3 Questions - Surfactants

② 1. What happened to the paperclip when you added the drops of soap solution? Why do you think this happened?

② 2. A typical soap compound has a structure shown below. Assume carbon atoms exist at each bend in the chain, and there are enough hydrogen atoms bonded to fill 4 bonds per carbon. Circle the part of the soap compound that would be attracted to water. Explain your reasoning.

② 3. Soap acts as a *surfactant*, lowering the surface tension of water. Where can you find surfactants at home? What do they do? How does surface tension determine what those surfactants do?

Part 4 Analysis – Temperature and surface tension

Table 4 - Temperature and surface tension

Item	Small paperclip	Large paperclip
Observations		

Part 4 Questions – Temperature and surface tension

1. Compare your results to those observed in cooler water (Table 2). Were you able to float the paper clip on hot water as easily as cooler water?

	10	OC – SURFACE TE	ENSION / STUDE	NT HANDOUT				
0	2.		ns to the surfac why does this h	e tension of wat appen?	er as it is he	eated? From	an intermole	cular
	Pa	rt 5 Analysis ·	Surface ten	sion and smal	l particles			
		Table 5 – Surface tension and small particles						
				Pepper			Pepper + soar)
	Ol	oservations						
	Pa	rt 5 Questions	s – Surface te	ension and sm	all particles	i		
•	1.	water's surfac	ce? Explain yo	the same as pe ur answer based level compared	l on what yo	u think happ	ens with salt-	
0	2.	What other so examples.	ubstances in n	ature act like pe	epper when o	contacting wa	ater? Describe	e at least two
0	3.	strength of the predict wheth	ne intermolecul	termolecular for lar forces of pola easier or more vers.	ar compound	s like water?	Based on you	ır answer,

2 4. How does the polarity of a molecule relate to its surface tension?