Period

2. Density

Driving Questions

In 250 B.C., Archimedes, a famous Greek philosopher, was given the task of determining if the king's crown was solid gold. The crown could not be damaged in any of the tests. Archimedes found a solution using one of gold's intensive physical properties. What procedure did Archimedes use to test if the crown was gold and why did this procedure work?

Background

You can make a number of different observations when given a sample of a substance. Some properties of a substance, such as weight and volume, depend on the amount of material present. These properties are called extensive properties. Other properties, such as the substance's color, remain constant no matter how much material you have. These properties are called intensive properties.

Density is an intensive property of a substance that relates the substance's mass to the amount of space (volume) the substance occupies. Lead is a very dense material. It is very heavy compared to its size. Aluminum, however, is not dense. It feels light for the amount of material present. If the density of an object is less than the density of water ($\rho_{water} = 1.0 \text{ g/mL}$), then the object floats. If the density of the object is greater than the density of water, the object sinks.

The density of a substance can be found using the formula, density $= \frac{\text{mass}}{\text{volume}}$.

You can use a balance to find an object's mass. The volume of the object can be found using two different methods. If the object is a regular geometric shape, such as a cylinder, a cube, or a sphere, a mathematical formula can be used to determine the volume. If the object is of an irregular shape, then volume can be determined by water displacement. By comparing a sample's density to a list of known densities, the identity of the substance can be found.

Materials and Equipment

For each student or group:

- PASCO density set
- Beaker, 150-mL
- Graduated cylinder, 50- or 100-mL
- Balance (2 to 3 per class)

- Overflow can
- Metric ruler (or calipers)
- Water, 500 mL
- String

Safety

Follow all standard laboratory practices.

1:7:1:40

Sequencing Challenge

The steps below are part of the Procedure for this lab activity. They are not in the right order. Determine the proper order and write numbers in the circles that put the steps in the correct sequence.

Procedure

After you complete a step (or answer a question), place a check mark in the box (\Box) next to that step.

Collect Data

Part 1 – Brass Objects

- **1.** \Box List at least two qualitative observations about the brass objects.
- **2**. \Box Predict how the density of the brass block compares to the density of the brass cylinder.

3. □ Measure the length, width, height, and mass of the brass block and the height, diameter, and mass of the brass cylinder. Record your results in Table 1 below.

Object	Length (cm)	Width (cm)	Height (cm)	Diameter (cm)	Mass (g)
Brass block					
Brass cylinder					

Table 1: Dimensions and mass of brass objects

Part 2 – Aluminum Objects

- **4**. \Box List at least two qualitative observations about the aluminum objects.
- **5.** \Box Predict how the densities of the three aluminum objects will compare to each other.
- **6.** □ Measure the length, width, height and mass of the aluminum block and the height, diameter, and mass of the aluminum cylinder and record your results in Table 2 below.

Table 2	Dime	ensions	and	mass	of	aluminum	objects
	. Dinie	11310113	anu	11111111111	UI.	aiuminum	objecta

Object	Length (cm)	Width (cm)	Height (cm)	Diameter (cm)	Mass (g)
Aluminum block					
Aluminum cylinder					

7. \Box Measure the mass of the irregular-shaped aluminum object.

Mass of irregular-shaped aluminum object (g):

- **8.** \Box Complete the following steps to measure the volume of the irregular-shaped aluminum object using water displacement.
 - **a**. Put the beaker under the overflow can spout.
 - **b**. Pour water into the overflow can until it overflows into the beaker.
 - **c**. Allow the water to stop overflowing on its own and empty the beaker into the sink.
 - **d**. Place the beaker back in its position under the overflow can spout without touching the overflow can.
 - **e.** Tie a string to the irregular-shaped object and gently lower the object into the overflow can until it is completely submerged.
 - **f.** Allow the water to stop overflowing and then pour the water from the beaker into the graduated cylinder.
 - **g.** Measure the volume that was displaced by reading the water level in the graduated cylinder.
 - **h.** Record the volume of water that was displaced in units of cm^3 (1 mL = 1 cm³).

Volume of water displaced (mL):

9. \Box Why do you need to use the water displacement method for the irregular-shaped object?

Part 3 – Unknown Plastic Objects

10. \Box List at least two qualitative observations about the plastic cylinder.

11.□ Table 3 lists three common plastics and their densities. How might you determine the material that the plastic cylinder is made?

Types of Plastic	Density
Polypropylene	$0.95 \mathrm{~g/cm^3}$
Nylon	1.15 g/cm^3
Polyvinyl chloride	1.39 g/cm ³

Table 3: Density of plastics

12. □ Measure the height, diameter, and mass of the plastic cylinder and record your results in Table 4 below.

Table 4: Dimensions and mass of a plastic cylinder

Object	Height	Diameter	Mass
	(cm)	(cm)	(g)
Plastic cylinder			

13. \Box Clean up your lab station according to the teacher's instructions.

Data Analysis

Part 1 – Brass Objects

1. □ Use the following equations to calculate the volumes of the brass block and brass cylinder. Show your work and record your results in Table 5 below.

Volume (block) = length × width × height Volume (cylinder) = height × πr^2

Table 5: Volume of brass objects

Object	Show Your Work Here	Volume
Brass block		
Brass cylinder		

2. □ Use the following equation to calculate the densities of the brass block and brass cylinder. Show your work and record your results in Table 6 below.

density = $\frac{\text{mass}}{\text{volume}}$

Table 6: Density of brass objects

Object	Object Show Your Work Here	
Brass block		
Brass cylinder		

3. \Box Did the shape of the brass object have an effect on the resulting density?

Part 2 – Aluminum Objects

4. □ Calculate the volumes of the aluminum block and the aluminum cylinder. Show your work and record your results in Table 7 below.

Table 7: Volume of aluminum objects

Object	Show Your Work Here	Volume
Aluminum block		
Aluminum cylinder		

5. □ Calculate the density of the aluminum block, aluminum cylinder, and the irregular-shaped aluminum object. Show your work and record your results in Table 8 below.

Table 8: Density of aluminum objects

Object	Show Your Work Here	Density
Aluminum block		
Aluminum cylinder		
Irregular-shaped aluminum object		

6. □ Did the shapes of the aluminum objects have an effect on the resulting densities?

Part 3 – Unknown Plastic

7. □ Calculate the volume of the plastic cylinder. Show your work and record your results in Table 9 below.

Table 9: Volume of plastic cylinder

Object	Show your work here	Volume
Plastic cylinder		

8. □ Calculate the density of the plastic cylinder. Show your work and record your results in Table 10 below.

Table 10: Density of plastic cylinder

Object	Show your work here	Density
Aluminum block		

9. \Box From which plastic is the cylinder made?

Analysis Questions

1. Does the shape of an object affect its density?

2. Is it possible for two objects to have the same volume and different densities? Explain your answer and provide evidence from this experiment to support it.

3. Which material, brass, aluminum, or plastic, was the most dense?

4. Research the accepted values for the densities of aluminum and brass. How do the accepted answers compare to the values you calculated in this experiment?

Synthesis Questions

Use available resources to help you answer the following questions.

1. Will the brass, aluminum, or plastic cylinder float in water? Explain.

2. If a company buys 200 cm³ of aluminum, how much would you expect the aluminum to weigh?

3. A 260-kg tree that is 10 m tall and 25 cm in diameter falls into a river. Explain mathematically why the tree floats, given that the density of water is 1000 kg/m³.

4. Can a very large object have the same density as a very small object? Explain.

5. A student has three silver cubes. Although the cubes look the same, one is made of zinc, another is made of lead, and third is made of aluminum. How can the student determine the material that was used to make each cube?

6. A rectangular object weighs 2445 g and its density is 12.9 g/cm³. When measured, its height is 7.43 cm and its width is 3.45 cm. How long is the object?

Multiple Choice Questions

Select the best answer or completion to each of the questions or incomplete statements below.

1. Diamond has a density of 3.26 g/cm³. What is the mass of a diamond that has a volume of 0.350 cm³?

- **A.** 0.107 g
- **B.** 1.14 g
- **C.** 9.31 g
- **D.** None of the above

2. What is the volume of a sample of liquid mercury that has a mass of 76.2 g, given that the density of mercury is 13.6 g/mL?

- **A.** 0.178 mL
- **B.** 5.60 mL
- **C.** 1040 mL
- $\textbf{D.} \ \ None \ of \ the \ above$

3. Which statement about density is true?

- A. Two samples of nickel may have different densities
- **B.** Density is constant for all types of metals
- ${\bf C}. \ \ \, {\rm The \ density \ of \ a \ sample \ depends \ on \ its \ location \ on \ Earth$
- **D**. Density is a constant value for all objects made of the same material

4. A zinc block has a mass of 20 g and a zinc cylinder has a mass of 40 g. How will the density of the two objects compare?

- **A**. The zinc block will be less dense than the zinc cylinder
- **B.** The zinc block will be more dense than the zinc cylinder
- **C**. The zinc block and the zinc cylinder will have the same density
- **D.** There is not enough information to answer the question

5. Density equals:

- **A.** Mass / volume
- B. Volume / mass
- **C.** Mass \times volume
- **D.** Length \times width \times height

Key Term Challenge

Fill in the blanks from the list of words in the Key Term Challenge Word Bank.

1.	Properties that depend on the amount of material present are called					
pro	perties, and include	_ and	. Those properties that			
are	are independent of the amount of substance being studied are called					
pro	perties, and include color,	, and	·			

2	is the amount of matter in a particular amount of space. Density is the		
ratio of	to	to Substances with large densities feel	
	for their size. Substances with densities less than 1.0 g/mL		
	in water. To find an object's der	nsity, a is used to	
determine its ma	ass. Volume is found either by using a	a or by	
	Density can be used to	a substance.	

Paragraph 1	Paragraph 2
boiling point	balance
chemical	change
density	cold
extensive	density
intensive	dissolve
mass	float
physical	gravity
volume	heavy
	hot
	identify
	light
	mass
	mathematical formula
	react
	sink
	temperature
	thermometer
	volume
	water displacement

Key Term Challenge Word Bank